Marietta City Schools

2023-2024 District Unit Planner

Grade 7 Mathematics					
Unit title	Unit 1: Making Relevant Connections within The Number System	MYP year	2	Unit duration (hrs)	27 hours

Mastering Content and Skills through INQUIRY (Establishing the purpose of the Unit): What will students learn?

GA DoE Standards

Standards
7.NR. 1 Solve relevant, mathematical problems, including multi-step problems, involving the four operations with rational numbers and quantities in any form (integers, percentages, fractions, and decimal numbers).
7.MP: Display perseverance and patience in problem-solving. Demonstrate skills and strategies needed to succeed in mathematics, including critical thinking, reasoning, and effective collaboration and expression. Seek help and apply feedback. Set and monitor goals.

Concepts/Skills to support mastery of standards

Published: August, 202

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

	Expectations	Evidence of Student Learning (not all inclusive; see Grade Level Overview for more details)			
7.NR.1.1	Show that a number and its opposite have a sum of 0 (are additive inverses). Describe situations in which opposite quantities combine to make 0 .	Terminology - In the equation $3+-3=0,3$ and -3 are additive inverses of each other.		Example - Your bank account balance is $\mathbf{-} \mathbf{\$ 2 5 . 0 0}$. You deposit $\$ 25.00$ into your account. The net balance is $\$ 0.00$.	
7.NR.1.2	Show and explain $\mathrm{p}+\mathrm{q}$ as the number located a distance $\|q\|$ from p, in the positive or negative direction, depending on whether q is positive or negative. Interpret sums of rational numbers by describing applicable situations.	Strategies and Methods - Students should be able to add and subtract integers and other rational numbers presented within relevant, mathematical problems, using strategic thinking and a variety of tools.		Example - $6+(-4)$ is 4 units to the left of 6 on a horizontal number line or 4 units down from 6 on a vertical number line.	
7.NR.1.3	Represent addition and subtraction with rational numbers on a horizontal or a vertical number line diagram to solve authentic problems.	Strategies and Methods - Students should represent a variety of types of rational numbers on a number line diagram presented both horizontally and vertically.			
7.NR.1.4	Show and explain subtraction of rational numbers as adding the additive inverse, p -$\mathrm{q}=\mathrm{p}+(-\mathrm{q})$. Show that the distance between two rational numbers on the number line is the absolute value of their difference and apply this principle in contextual situations.	Examples - Find the distance between a submarine submerged at a depth of $27 \frac{3}{4}$ feet below sea level and an airplane flying at an altitude of $1262 \frac{1}{2}$ feet above sea level. - $-\frac{1}{2}-(-2)$ is the same expression as $-\frac{1}{2}+-(-2)$, which is 2 units to the right of $-\frac{1}{2}$ on a horizontal number line or 2 units up from $-\frac{1}{2}$ on a vertical number line.			
7.NR.1.5	Apply properties of operations, including part-whole reasoning, as strategies to add and subtract rational numbers.	Fundamentals - Students should be allowed to explore the signs of integers and what they really mean to discover integer rules.	Strategies and Methods - Students should be able to use the Commutative and Associative properties to combine more than two rational numbers flexibly.	Terminology - Part-whole reasoning refers to how numbers can be split into parts to add and subtract numbers more efficiently.	Example - $(-8)+5+(-2)$ may be solved as $(-8)+1$ $-2)+5$ to first make -10 by using the Commutative Property.

[^0]Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

7.NR.1.6	Make sense of multiplication of rational numbers using realistic applications.	Strategies and Methods - Student should have opportunities to use concepts of repeated addition and the meaning of a negative sign as the "opposite of," with both models and representations, leading to deriving the rules for multiplying signed numbers. - Models may include, but are not limited to, number lines and counters.		Examples - $4^{*}(-5)$ is 4 groups of (-5) and $(-4) *(-3)$ is the opposite of $4^{*}(-3)$. - If yellow counters represent positive amounts and red counters represent negative amounts, you can model 3 * (-2) as three groups of two red counters. - David has a $\$ 0.00$ balance in his bank account. He makes three withdrawals of $\$ 1.46$ each. What is his bank account balance after the three withdrawals?	
7.NR.1.7	Show and explain that integers can be divided, assuming the divisor is not zero, and every quotient of integers is a rational number.	Fundamentals - If p and q are integers ($\mathrm{q} \neq 0$), then $-\left(\frac{p}{q}\right)=$ $\frac{(-p)}{q}=\frac{p}{(-q)}$.		Example - $-\left(\frac{20}{5}\right)=-4$ is the same as $\frac{(-20)}{5}=-4$ and $\frac{20}{(-5)}=$ -4	
7.NR.1.8	Represent the multiplication and division of integers using a variety of strategies and interpret products and quotients of rational	Fundamentals - Students should be allowed to explore the signs of integers and what they really mean to discover integer rules.	Strategies and Methods - Students can represent multiplication and division using number lines, counters, etc.	Example - Create a model and realistic situations for each of the products. Write and model the family of equations related to $2 \times 3=6$.	
				2xater	Paxcoges ot epples a 5300 per peck
					dallus eachion 2 percupon d Apples
				${ }^{-6} \ldots$	
					83 detes at 5.200 each
7.NR.1.9	Apply properties of operations as strategies to solve multiplication and division problems involving rational numbers represented in an applicable scenario.	Fundamentals - Students should be allowed to explore the signs of integers and what they really mean to discover integer rules. - Students should be able to reason about direction on a number line when representing multiplication and division using the tool.		Strategies and Methods - Students should be able to use the Commutative and Associative properties to combine more than two rational numbers flexibly.	Example - $(-8) * 2 *(-5)$ may be solved as $(-8) *\left(2^{*}(-\right.$ 5)) to multiply by negative ten, using the Associative Property.
7.NR.1.10	Convert rational numbers between forms to include fractions, decimal numbers and percentages, using understanding of the part divided by the whole. Know that the decimal form of a rational number terminates in Os or eventually repeats.	Fundamentals - This is an extension of previous understanding from 6th grade of writing common fractions as decimal numbers and percentages.		Age/Developmentally Appropriate - Students should know that every rational number can be written as the ratio of two integers, terminating decimal numbers, or repeating decimal numbers.	

[^1]Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

- How can operations with positive and negative numbers be represented using models, such as number lines and counters?

Debatable

- Is there one best method for solving operations with rational numbers?

MYP Objectives		Assessment Tasks	
What specific MYP objectives will be addressed during this unit?	Relationship between summative assessment task(s) and statement of inquiry:	List of common formative and summative assessments.	
Criterion A: Knowing and Understanding	Students will demonstrate how to use mathematical models to represent real world situations with rational numbers. Criterion D: Investigating Patterns	Formative Assessment(s): Unit 1 CFA Summative Assessment(s): Unit 1: Operations with Rational Numbers MYP: Topic 1 Performance Assessment Form A(1-4 only)	

Approaches to learning (ATL)

Category: Thinking

Cluster: Critical Thinking, Creative Thinking \& Transfer
Skill Indicator: Apply skills and knowledge in unfamiliar situations.

Published: August, 2023

Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

Learning Experiences

Add additional rows below as needed.

Objective or Content	Learning Experiences	Personalized Learning and Differentiation
7.NR.1.1: Show that a number and its opposite have a sum of 0 (are additive inverses). Describe situations in which opposite quantities combine to make 0 . 7.NR.1.2: Show and explain $p+q$ as the number located a distance $\|q\|$ from p, in the positive or negative direction, depending on whether q is positive or negative. Interpret sums of rational numbers by describing applicable situations. 7.NR.1.3: Represent addition with rational numbers on a horizontal or a vertical number line diagram to solve authentic problems. 7.NR.1.5: Apply properties of operations, including part-whole reasoning, as strategies to add and subtract rational numbers.	Integers in the Real World In this learning plan, students will explore multiple real-life contexts to find sums of integers using tools (two color counters or number lines). Students will represent and explain in words how they arrived at the sum or difference. The learning goals are: 1. I can show that a number and its opposite have a sum of zero using counters or a number line. 2. I can interpret sums of rational numbers in a scenario.	This activity can be implemented in groups or individually. Students can be provided with copies of notes, two color counters, number lines and utilize color coding to organize information to connect mathematical representations.
7.NR.1.7: Show and explain that integers can be divided, assuming the divisor is not zero, and every quotient of integers is a rational number. 7.NR.1.8: Represent the multiplication and division of integers using a variety of strategies and interpret products and quotients of rational numbers by describing them based on the relevant situation. 7.NR.1.9: Apply properties of operations as strategies to solve multiplication and division problems involving rational numbers represented in an applicable	Patterns of Multiplication and Division In this learning task, students will use the number line model to illustrate division of integers. The learning goals are: 1. I can identify patterns in the relationship between multiplication and division. 2. I can divide integers using various tools.	This activity can be completed in partners or in a group. Students can be provided number lines or two-color counters. Scaffolding tools can help the struggling learner.

[^2]Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

scenario.		
7.NR.10: Convert rational numbers between forms to include fractions, decimal numbers and percents, using understanding of the part divided by the whole. Know that the decimal form of a rational number terminates in Os or eventually repeats. 7.NR.11: Solve multi-step contextual problems involving rational numbers, converting between forms as appropriate, and assessing the reasonableness of answers using mental computation and estimation strategies.	Solve Multi-Step Problems In this learning task, students will solve multi-step problems. Students will engage with various number types including percentages, fractions, and whole numbers. The learning goals are: 1. I can use multiple strategies for adding, subtracting, multiplying, and dividing positive and negative rational numbers. 2. I can solve multi-step problems involving quantities in multiple forms.	This activity can be implemented in table groups or partners. Students can be grouped according to their diagnostic assessment strengths and weaknesses
Content Resources		
6-11 Savvas Correlation to 2021 standards Intervention Tasks Greedy Pig and Number Cards (7.NR.1.2, 1.3, 1. -Know the basic addition and subtraction facts. Fair Shares (7.NR.1.5 and 1.10) -Know simple fractions in everyday use. Adding in Parts and Addition/Subtraction Strat -Understand addition and subtraction of fractio -Record and interpret additive and simple multip Additional Resources - Savvas - Desmos - Hands-On Math	4, 1.5) gies (7.NR.1.2, 1.3 ,1.4, 1.51.6, 1.7,1.8,1.9) s, decimals, and integers. plicative strategies, using a variety of strategies.	

[^3]Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

[^0]: Published: August, 2023

[^1]: Published: August, 2023

[^2]: Published: August, 2023

[^3]: Published: August, 2023

